**Preview**of what we will be doing in the next few lessons.

**1. Number Lines**

**2. Real Numbers**

**3. Operations of Numbers**

Integers -

**Zero Pairs**(Basic Concept)**The sum of an integer and its opposite is ZERO**

**E.g. 1: - 20 + 20 = 0****E.g. 2: 56 + (-56) = 0****E.g. 3: -28 + 28 = 0**

Integers - Addition of Integers (Basic Concepts)

**Evaluate - 3 + (-2)**

__Rule__:**To add two negative numbers, add their absolute values and take the negative sign for the answer**

**E.g. 1: -25 + (-17) = -42****E.g. 2: -21 + (-21) = -42****E.g. 3: -18 + (-11) = -29**

**~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~**

**Evaluate 3 + (-7)**

__Rule__: To add 2 integers of different signs such that the__negative__integer has a larger absolute value, we find the difference between their absolute value and take the__negative__sign for the answer.**E.g. 1: -17 + 12 = -5****E.g. 2: 52 + (-67) = -15****E.g. 3: -88 + 85 = -3****E.g. 4: 28 + (-82) = -54**

__Rule__: To add 2 integers of different signs such that the__positive__integer has a larger absolute value, we find the difference between their absolute value and take the__positive__sign for the answer.**E.g. 1: -12 + 17 = 5****E.g. 2: -63 + 68 = 5****E.g. 3: 86 + (-53) = 33****E.g. 4: -38 + 83 = 45**

Integers - Subtraction (Basic Concepts)

**Evaluate - 2 - 6**

*Note: Zero Pairs are introduced.*

**Evaluate - 5 - (-3)**

**Evaluate 5 - (-7)**

*Note: Zero Pairs are introduced.*

Multiplication (Basic Concepts)

Draw comparison between **2 x 3**(i.e. 2 groups of positive 3)

and

**2 x (-3)**(i.e. 2 groups of negative 3)

**2 x 3 = 6**

**2 x (-3) = -6**

Division (Basic Concepts)

Draw comparison between **8 ÷ 2**

and

**(-8) ÷ 2**

**8 ÷ 2 = 4**

**(-8) ÷ 2 = -4**

**Using Number Line to Explain...**

**(A) Adding and Subtracting Negative Numbers**

**(B) Adding Negative Numbers:**

Find: -45 + (-46) + (-29)

(

**C) Adding Integers of Different Signs**

Find: 15 + (-46) + 29

**4. Properties of Operations**

**Commutative & Associative Properties**

**Commutative Property of Multiplication**

**5. Recurring Decimals**

**Converting Repeating Decimals (Recurring Number) to Fraction**

## No comments:

## Post a Comment

Note: only a member of this blog may post a comment.